Skip to contents

Time-varying mediation analysis using g-computation

Usage

tvmedg(
  data,
  id,
  basec,
  expo,
  med,
  tvar,
  outc,
  time,
  lag = 2,
  norev = NULL,
  cont_exp = FALSE,
  cont_exp_std = FALSE,
  tvar_to_med = FALSE,
  mreg = NULL,
  lreg = NULL,
  yreg = NULL,
  sp_list = NULL,
  sp_type = NULL,
  sp_df = NULL,
  followup = NULL,
  seed = 0,
  montecarlo = 1000,
  boot = FALSE,
  nboot = 1,
  ci = 0.95,
  parallel = FALSE
)

Arguments

data

input data

id

patient id

basec

time-fixed variables

expo

exposure variable

med

mediator variable

tvar

time-varying variable

outc

outcome variable

time

time variable

lag

number of lag

norev

non-reversible variable (among expo,med,tvar)

cont_exp

continuous exposure

cont_exp_std

standardize the continuous exposure

tvar_to_med

time-varying varible to mediator

mreg

regression model for mediator

lreg

regression model for time-varying variable

yreg

regression model for outcome variable

sp_list

splines list

sp_type

splines type

sp_df

spines degree of freedom

followup

length of follow up

seed

set seed

montecarlo

number of repeated samples for accept-reject algorithm

boot

doing boostrap

nboot

bootstraping times

ci

confident interval

parallel

run parallel

Value

Q11, Q10, Q00